Notes

7-DEMETHYLNAPHTERPIN, A NEW FREE RADICAL SCAVENGER FROM Streptomyces prunicolor

KAZUO SHIN-YA, AKIRA SHIMAZU, YOICHI HAYAKAWA and HARUO SETO*

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received for publication August 7, 1991)

In the course of our screening for free radical scavengers, we isolated naphterpin (I) from *Streptomyces aeriouvifer*¹⁾. It was one of the useful examples to investigate the biosynthesis of terpenoids of actinomycetes origin²⁾, and it consisted of

Table 1. Physico-chemical properties of 7-demethylnaphterpin.

Appearance	Yellow powder
MP (dec)	217~218°C
$[\alpha]_{D}^{21}$ (<i>c</i> 0.15, CHCl ₃)	- 586°
Molecular formula	C ₂₀ H ₂₀ O ₅
HRFAB-MS (m/z)	Calcd: 341.1389
	Found: 341.1396 (M+H) ⁺
UV λ_{\max}^{MeOH} nm (ε)	266 (18,800), 306 (12,400), 410 (4,200)
$\lambda_{\max}^{MeOH + NaOH} nm$ (e)	229 (25,200), 292 (20,700), 328 (8,600), 505 (4,200)
IR (KBr) cm ^{-1}	3400, 1620, 1610, 1580, 1280, 1220

two separated substructures, the naphthoquinone and terpenoid moieties. Further screening has resulted in the isolation of 7-demethylnaphterpin (II) from another strain, *Streptomyces prunicolor*, which produced potent free radical scavengers designated benthocyanins³⁾.

A crude ethyl acetate extract of mycelial extract was purified *via* chromatography on a silica gel column using chloroform - methanol (50:1). Further purification on a Sephadex LH-20 column using chloroform - methanol (1:1) gave a pure sample of II.

The physico-chemical properties of II are shown in Table 1. The molecular formula of II was determined as $C_{20}H_{20}O_5$ by HRFAB-MS ((M+ H)⁺, m/z, calcd: 341.1389, found: 341.1396). The UV and IR absorptions indicated the presence of a naphthoquinone chromophore as recognized in I.

As summarized in Table 2, the ¹³C and ¹H NMR spectral data of **II** are very similar to those of **I**. In

Fig. 1. Structures of 7-demethylnaphterpin and naphterpin.

Table 2.	¹³ C and	¹ H NMR	chemical	shifts	of 7-d	lemethyl	naphterpin
----------	---------------------	--------------------	----------	--------	--------	----------	------------

No.	7-Demethylnaphterpin		Naphterpin		NT.	7-Demethylnaphterpin		Naphterpin	
	¹³ C	¹ H	¹³ C	¹ H	NO.	¹³ C	¹ H	¹³ C	¹ H
1	183.1		183.1		11	136.1		136.1	
2	153.0		153.5		12	29.7	1.95	29.6	1.95
3	123.8		123.3		13	20.4	1.28,	20.4	1.25,
4	183.6		184.8				1.95		1.95
4a	135.0		131.4		14	39.7	1.76	39.7	1.75
5	108.3	7.09	108.4	7.31	15	80.6		80.8	
6	162.9		161.5		16	23.5	1.66	23.5	1.64
7	107.2	6.53	117.2		17	25.7	1.55	25.6	1.51
8	164.3		162.6		18	25.0	1.33	25.1	1.34
8a	108.9		107.9		6-OH		6.37		8.25
9	31.1	3.48	31.1	3.47	8-OH		11.92		12.20
10	120.0	6.04	120.0	6.01	7-CH ₃			7.8	2.15

ppm from internal TMS in CDCl₃.

the ¹H NMR spectrum of **II**, however, the methyl singlet signal assignable to 7-CH₃ (2.15 ppm) in **I** was replaced by an olefinic singlet proton 7-H (6.53 ppm) *meta*-coupled to 5-H (7.09 ppm, J = 2 Hz). The ¹³C NMR spectrum of **II** also supported the disappearance of 7-CH₃ (7.8 ppm) observed in **I**. Thus, the quaternary carbon C-7 (117.2 ppm) in **I** was replaced by a protonated carbon (107.2 ppm) in **II**. These data suggested that the structure of **II** was a demethylated derivative of **I** at the C-7 position.

The absolute stereochemistry of **II** was deduced to be the same as that of **I** based on the similar optical rotation values ($[\alpha]_D^{21} - 586^\circ$ (*c* 0.15, CHCl₃); *cf.* **I**, $[\alpha]_D^{23} - 648^\circ$ (*c* 0.1, CHCl₃)), and is as shown in Fig. 1.

The activity of **II** to inhibit lipid peroxidation in rat liver microsomes was almost the same as that of **I**; IC₅₀ values of **II** and **I** were 9.0 μ g/ml and 5.3 μ g/ml, respectively, while that of vitamin E was 9.3 μ g/ml. Thus, the methyl residue at C-7 dose not affect the radical scavenging activity of the naphterpins.

Although II was isolated from *Streptomyces* prunicolor, I could not be detected as a metabolite of this microorganism so far tested, while a trace of II was produced by *Streptomyces aeriouvifer* (about 1% of the amount of I). In addition, II was produced in a high yield by some mutants of *Streptomyces aeriouvifer* that produced a trace of naphterpin (unpublished data). These phenomena indicated that II is reasonably assumed to be a precursor of I.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Cooperative Research, The Ministry of Education, Science and Culture, Japan and by a grant from Japan Antibiotic Research Association.

References

- SHIN-YA, K.; S. IMAI, K. FURIHATA, Y. HAYAKAWA, Y. KATO, G. D. VANDUYNE, J. CLARDY & H. SETO: Isolation and structural elucidation of an antioxidative agent, naphterpin. J. Antibiotics 43: 444~447, 1990
- SHIN-YA, K.; K. FURIHATA, Y. HAYAKAWA & H. SETO: Biosynthetic studies of naphterpin, a terpenoid metabolite of *Streptomyces*. Tetrahedron Lett. 31: 6025~6026, 1990
- SHIN-YA, K.; K. FURIHATA, Y. HAYAKAWA, Y. KATO, J. CLARDY & H. SETO: The structure of benthocyanin A. A new free radical scavenger of microbial origin. Tetrahedron Lett. 32: 943~946, 1991